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Abstract

In recent years, the development of high throughput de-
vices for the massive parallel analyses of genomic data has

lead to the generation of large amount of new biological
evidences and has triggered the proliferation of data min-

ing algorithms for the extraction of meaningful information.

Microarrays for gene expression analyses are part of this
revolution and provide important insight in molecular biol-

ogy often in the form of coherent sets of genes represent-

ing previously uncharacterized processes. Large amount of
data are continuously produced in this form, and compu-

tational approaches can significantly improve the efficient
use of these results, since comparison among numbers of

genes sets can give new meaningful information at no cost

from the experimental biology point of view. To address this
opportunity we designed and implemented FIT, a scalable,

unsupervised algorithm that quantitatively compares differ-

ent populations of gene sets using two distinct measures of
similarity between any two gene sets. These measures are

then used to obtain a summary statistic that describes the
tightness of fit between sets belonging to two distinct pop-

ulations of gene sets. We present the results of FIT on two

data sets for the study of Lymphoma and Acute Lymphoblas-
tic Leukemia. In both cases FIT was able to recapitulate the

previous analyses on these datasets, to extend the results

and to extract information likely to offer potential insights
into the underlying biology.

1 Introduction

Since the decoding of the human genome, an impor-
tant change in life science has occurred that involves the
strong contribution of information technology to biological
research. In fact, the availability of such an amount of in-
formation requires automated approaches for the efficient
management and data mining of these new, large types of
data. The proliferation of devices able to process in paral-
lel thousands of experiments and almost capable to perform
genome-wide screens is a consequence of this new para-
digm. Expression microarrays are such one tool and allow
the evaluation of the activation of number of genes under
different environmental conditions. Data mining algorithms
demanded to the analysis of expression data are used for
both extracting and defining clusters of genes (sometimes
called signatures) whose pattern of expression is concur-
rently shared by and that helps to characterize a particular
class of samples and/or genes to identify for example dif-
ferent sub-populations within a disease and to predict sur-
vival and disease-free status (i.e.[2]). A complete review on
classical and recent algorithms is presented in [12, 10], for
algorithm specifically designed for the integration of clini-
cal and expression information see also [17, 18]. What all
these approaches share in common is the generation and de-
finition of new gene sets which continually expand and pop-
ulate our genomic knowledge base. Gene sets are defined as
lists of genes IDs and through the process of annotation it is
possible to characterize the global meaning of a gene set in
terms of its role in some molecular process, or disease evo-
lution and more. Against this background, when exploring
new hypotheses it is often useful to interrogate this broad



population of gene sets. In fact, computational approaches
can help the mining of new information at no experimental
cost from a biological point of view. For example, the possi-
bility to compare newly found or already characterized gene
sets against an appropriate subset of annotated gene sets,
can give meaningful insight about the new sets or enrich the
characterization to mine new relevant information. More-
over, on the computational side, ongoing research in and ap-
plication of data mining techniques to genomics often lead
to comparisons of different algorithms. This comparison is
necessary to measure the differences in computational ef-
ficiency or complexity of the algorithm, but also to check
and confirm that the results found make biological sense.
In such cases there is an obvious need for comparison with
known reference sets. The necessity to have a standard ap-
proach to this problem was a strong practical motivation to
the implementation of FIT to evaluate a measure of similar-
ity between any two sets of genes from two different popu-
lations of gene sets, where a population is defined as a set
of gene sets.

The main contribution of this work is the definition of
a complete and flexible measure of the relationship among
two populations of genes sets in terms of their similarity.
This approach overcomes two main limitations of previ-
ously published techniques based on statistical similarity
measures, namely using enrichment and its significance. In
fact, previous approaches allowed the selection of only one
population of gene sets (test population) to measure its sim-
ilarity against the categories of Gene Ontology [16], a hi-
erarchically structured vocabulary for the characterization
of gene sets in terms of defined classes (reference popu-
lation) [1, 14]). In contrast, we designed an approach to
gene cluster characterization allowing the choice of both
user-defined test and reference populations. This has two
main advantages. In fact, it allows to approach two differ-
ent problems related to gene cluster similarity evaluation.
First, it is possible to compare the test population issued
from a new data mining algorithm against a known bench-
mark, a common issue that is so far addressed by ad hoc
approaches (i.e. [5, 8]). Second, it allows contrasting two
populations of genes sets, related by some common biol-
ogy and often issued from different studies, to inquire about
possible commonality, likely to give more insight into the
biological problem under study. This evaluation performed
in silico can save part of costly and time consuming biolog-
ical experiments. Moreover, the fact that both populations
are specified by the user often requires a more subtle eval-
uation of the measure of similarity. For this reason we also
improved the score used so far (enrichment) adding infor-
mation about the specificity of the enrichment. In fact, in
case of ties in the value of enrichment, the specificity and its
significance are a unique property of the considered set. Fit
is freely available at: http://www-micrel.deis.unibo.it/˜fit/.

2 Related Work

To date, the automated characterization of genes sets
produced by microarray experiments has often been per-
formed using the definitions stored in the controlled hier-
archical vocabulary curated by the Gene Ontology Consor-
tium. Gene Ontology (GO) is as a structured vocabulary
used to classify molecules, cellular products and activities
of genes from three main points of view (Molecular Func-
tion, Biological Process, Cellular Component) called on-
tologies. However, a large number of genes is still not char-
acterized, due to the lack of information about their role.
Thus, the main application of the GO vocabulary consists
in labeling the genes in a set of interest with the appropri-
ate GO term, when available, (annotation process) and to
extend the annotation to uncharacterized genes, provided
that the number of genes in the set related to the specific
GO term is bigger than the number expected by chance
(enrichment analysis). Because of its free availability, its
plasticity and its continuous growth, GO has become the
gold standard for automated gene annotation, triggering in-
terest around the notions of similarity on which it is based,
and motivating the design of several tools to automate the
process of relating newly found clusters to it (only as a sam-
ple [1, 14]). However, besides the undeniable importance
of having such a structured and controlled classifier, some
limitations arise, notably related to the necessity of a man-
ual curation. For this we elaborated this new approach to
annotate genes in a more flexible way. In fact, very often
the design of a microarray experiment aims at studying in
deeper detail the mechanisms peculiar to a disease or envi-
ronment stress. For this reason, gene clusters are not only
annotated with GO terms, but also labeled in terms of the
effects of a disease or of environment stress. This labeling
is sometimes transversal to GO and carries information of
diverse origin.

Finally, it is a common and necessary issue to compare
the results of new data mining algorithms to known bench-
marks. There is no standard method to approach this typi-
cally computational problem, conversely to what happens in
biologically oriented research. Because of this lack, various
approaches have been implemented. Cheng et al. ([5]) de-
signed a well known biclustering algorithm able to cluster
genes and samples (generically called items or conditions)
in parallel. To validate their approach on microarray exper-
iments they defined two scores. The first score (mix) was
meant to measure the affinity of their bicluster to a bench-
mark made of only 2 clusters called primary clusters. It
measures the percentage of items in the bicluster that belong
to the less represented primary cluster. The second score
(row variance) was defined to help the selection of the most
interesting bicluster, discarding trivial, non-informative bi-
clusters made of items (genes or samples) whose value was



constant through the conditions (samples or genes). It gives
a measure of the variance of an item through some condi-
tions. A combination of low mix score and high row vari-
ance is likely to select biologically interesting biclusters. A
limitation of this approach is that it involves the contempo-
rary observation of two measures and the interpretation of
all possible combination of values. Moreover, it is limited
to the benchmark chosen, that consists of only two clusters.
Finally, especially for the gene biclusters validation, this ap-
proach does not actually compare to clusters with known
biological meaning, since primary clusters are poorly char-
acterized. Thus, this implies a subsequent manual curation
of the most interesting biclusters, difficult to be performed
and biologically validated with information technology fa-
cilities alone. Getz et al. ([8]) also defined a biclustering
algorithm: the Coupled Two Way Clustering (CTWC). In
their validation approach they gave more attention to the bi-
ological meaning of their results, however this consisted of
a careful but time consuming manual curation.

With our approach, the number of clusters in the bench-
mark is not a limit, and it is straightforward to compare to
biologically meaningful clusters experimentally validated.
Besides the more informative validation obtained, this also
simplifies the difficult and time consuming validation per-
formed on a cluster by cluster basis.

3 Computing Similarity

When comparing two populations of clusters there is
generally a clear distinction in the quality of the two popu-
lations in terms of their semantic characterization. In fact,
the comparison is often performed between a population
whose sets’ meaning is known, here called reference, and
one whose sets’ meaning is unknown, here called test pop-
ulation. The attempt is to describe the test sets in terms of
the reference sets.

Enrichment. To obtain a measure of the similarity be-
tween the information contained in a test set with respect to
that contained in a reference set we calculated the enrich-
ment score (η) ([19]). With this approach, we assume that
the reference sets are the base of knowledge for this com-
parison and we represent every set as a distribution of genes,
where the categories are the reference sets. The enrichment
score evaluates the proportion of the relative frequency ob-
served in test set i for category j (f testi

j ) with respect to
the relative frequency expected in the reference population
(i.e. the relative size of reference set j, |refj |) and is calcu-

lated as follows: ηi,j = fobserved
i

fexpected
i

=
f

testi
j

/|testi|

|refj |/|RefPop| where

|setz| represents the size of set z and |RefPop| the size
of the ref population. To evaluate the significance of the
enrichment we used the hypergeometric distribution [13],
to calculate the probability α of being wrong when assum-

ing that the enrichment is not due to chance alone ([3, 4]).
Namely, we evaluated the probability that a specific amount
of items (r genes in the test set) of a given type (n1 genes
in the reference set) can be selected without replacement
in a sample (of n genes in the test set) from a broader
population (of N genes of test set population), where N
is the size of the background population. The comple-
ment to 1 of the cumulated probability of all the events
that are less likely than having r items belonging to the
sample, gives the statistical significance of the enrichment.

pη
i,j = 1 −

∑r−1
i=1

(n1

i )·(N−n1

n−i )
(N

n)
Specificity of the Enrichment. In order to express as

correctly as possible the test sets with the vocabulary rep-
resented by the reference population, the use of the enrich-
ment alone was not informative enough. For this reason we
designed an extra measure for the evaluation of the simi-
larity, here called the specificity of the enrichment to eval-
uate how exclusive the enrichment of the test set i for ref-
erence set j is, with respect to the other reference sets (for
an example see Figure 1). To this aim we compare the pro-
files of the enrichments through all the reference categories
of both the test and the reference set. The more similar
the profiles are, the more tight is the similarity. We used
Kendall’s coefficient of correlation τ [13], a non parametric
measure for the measure of association between variables
based on rankings. Assuming the null hypothesis in our
test is H0 : τ(testi, refj) = 0, we also defined the signif-
icance of the specificity pτ . τi,j = τ(testi, refj), pτ

i,j =
α, for H0 : τi,j = 0

Fit. Finally, we designed a global measure to synthesize
the information previously obtained. Namely, to quantify
the refinement of the enrichment with the supplementary
information of specificity, we multiplied the values of η and
τ , and defined the measure of fitness φ: φi,j = ηi,j×τi,j For
the evaluation of φ’s significance, we use Fisher’s method
for meta-analysis [9], that allows to combine the results
of several tests, merging their significance values comput-

ing Fisher’s statistic S = −2
∑#tests

i=1 ln(pi). In this case
#tests = 2, p1 = pη , p2 = pτ . When the tests are inde-
pendent and the scores have a uniform distribution in [0, 1],
S has a χ2

(α,2·#tests) distribution, where α summarizes the
results of the two tests and 2 · #tests are the degrees of
freedom. pφ

i,j = χ2(−2(ln pη
i,j + ln pτ

i,j), 4) A summary of
the scores’ characteristics is given in Table 1.

4 Algorithm Implementation

The tool core is developed under R, a statistical analysis
package, compatible with S (and Splus), freely available on
the web under the Free Software Foundation’s GNU gen-
eral public license. The user interface is developed using
php. Users requests are processed in the following pipeline:



Name Enr. Enr.Sign. Spec. Spec.Sign. Fit Fit Sign.

Symbol η pη τ pτ φ pφ

Origin fobs/fexp Hyp.Dist. Kend.Corr. Sign.Kend.Corr. Product Fisher’s met.
Range [0, +∞) [0, 1] [−1, 1] [0, 1] [0, +∞) [0, 1]

Table 1. Summarized characteristics and mathematical function or formula allowing the calculation
and range of variability of the scores calculated in FIT. η gives a relative measure of the increased
presence of items of a specific reference type in the studied test set. τ allows to discriminate
test sets with equal enrichment for a specific reference category, but different distribution of the
genes among other reference categories. Finally, φ synthesizes the results of the previously defined
scores. pη, pτ and pφ respectively give the statistical significance of each score.
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Test1 2.96 (0.00) 0.77(1.14 e-01) 2.29(0.00)
Test2 2.96 (0.00) -0.26(5.99 e-01) -0.76(0.00)
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Figure 1. Reference and Test population (Fig-
ure 1(a)) are build in such a way that the en-
richment of the two test sets for Ref2 appears
to be identical. However, since the distrib-
utions are not the same, the evaluation of
the specificity allows to discriminate between
the two test sets and identify the one that is
best suited to represent the information con-
tained in Ref2. Namely, Test2 has a distribu-
tion that is uniform across all the other refer-
ence sets, and thus Test1 is more suited to
describe Ref2, as the final values of φ and pφ

show in Table 1(b).

they are first stored in a database (MySql), where a batch
scheduled task retrieves and processes them using various
R scripts, while the user interface is waiting. Then, once the
results are stored, the web site can access and display them
on the user browser. Each request has an assigned code,
which allows the users to retrieve their results later. Input of

the algorithms are plain text files, where each column repre-
sents a gene set. All scores and their significance are stored
in tables where every row represents a test set, every column
a reference set and every cell represents the score. Output is
represented by a text and graphical version of these output
tables. Graphs represent score tables where cells are filled
in darker or lighter color proportional to the score value.
Rows and columns are then clustered to obtain the so called
heat-maps where sets of genes that are more similar are also
spatially closer. We designed this graphical output with
in the specific intent to recall the one of TreeView (freely
downloadable at: http://rana.lbl.gov/EisenSoftware.htm), a
familiar tool for microarray users, designed to visualize the
results of the data mining performed on microarray data us-
ing hierarchical clustering. This is a cluster analysis al-
gorithm, based on the iterative pairwise agglomeration of
items. Agglomeration is defined based on a similarity cri-
terion, evaluated by some metric (i.e. euclidean distance,
correlation). Pairwise agglomerations are organized in a hi-
erarchical way, starting in this case from genes and moving
to sets (nodes) of increasing size, until all the items are com-
prised in a single set (root of the hierarchy). Generation of
clusters is performed selecting nodes of the tree correspond-
ing to a threshold value of the distance metric, or a level of
agglomeration (depth) and defining the subtrees having as
root these nodes as clusters. Despite the fact that genes or-
ganized this way can only fall in one cluster at a time, which
is not biologically realistic, this method is broadly used, due
to its simple and intuitive visualization.

5 Experimental Results

We present here two different applications of our
method. The first example shows how it is possible to com-
pare the results of a new clustering algorithm against a pop-
ulation of annotated gene sets. The goal is to assess if the
new clustering algorithm is able to capture the biological in-
formation obtained and assessed with other techniques. The
second example explores the possibility to relate gene sets
annotated in two different studies, to infer new information



not apparent in the two studies alone.

Lymphoma Dataset. This dataset ([2]) was processed
using a hierarchical clustering approach. From this clus-
tering analysis, two reference populations were extracted:
(R1) the primary clusters (generated by the root division in
the hierarchical tree) and (R2) a population of six annotated
clusters (Pan B Cell, Germinal Centre Cell, T Cell, Acti-
vated B Cell, Proliferation, Lymph Node) which were se-
lected from the nodes of the hierarchical tree at different
levels of depth. For the test population we chose the gene
bicluster population (T) obtained through the use of the bi-
clustering algorithm on the same dataset (curated by Cheng
et al. [5]). We then applied FIT in order to measure how
well the biclustering algorithm of Cheng et al. was able to
capture in T the information obtained with hierarchical clus-
tering in (R1) and (R2). We first compared T with R1. We
found that 10 of the 100 gene biclusters were exclusively
related to one of the primary gene clusters, thus confirming
the results obtained with the mix measure by Cheng et al.
(see Section 2). We then explored the comparison between
T and R2 and ranked for every set in R2 the best fitting sets
in T. Interestingly, the set of best biclusters in T extracted
by the combined statistic φ was not the same extracted by
the enrichment statistic alone. Namely, bicluster #60 (best
fitness score) had only 2 genes in common with R2 and both
of them were related to Germinal Centre Cell cluster. Con-
versely, bicluster #79 (best enrichment score), had 3 genes
related to Germinal Centre Cell cluster, but with overall 6
genes in common with R2, spread over 2 more categories
(Pan B Cell, T Cell). For a graphical visualization of these
facts see Figure 2(a). Thus, since bicluster #79 had a more
uniform distribution of the genes across the reference sets,
the final fitness score was worse than the one evaluated for
bicluster #60 (6.3 vs 3.6). In conclusion FIT was able to
recapitulate the finding of previous work and also to give a
new meaning to the genes biclusters in term of the biochem-
ical information contained in sets of genes annotated from
the same dataset.

Acute Lymphoblastic Leukemia Datasets. We com-
pare here the results of two studies conducted on Acute
Lymphoblastic Leukemia (ALL). The first study ([7]) aims
at finding the gene signatures shared by both cell lines and
clinical samples, defining three subtypes of the ALL dis-
ease corresponding to three chromosomal abnormalities:
TEL/AML1, BCR/ABL and MLL. We used these three cor-
responding clusters, extracted with SAM [17], as reference
population. The second study [6] focuses on the sensitiv-
ity of ALL samples to L-Asparaginase (L-Asp), an impor-
tant component of most treatment regimens for ALL. Re-
sistance to this enzyme-derived drug is correlated to poor
prognosis ([11]). Since the mechanism of activity of this
compound are still largely unknown, this study aimed at
finding the set of genes that are differentially expressed in

responders versus non-responders to L-Asp treatment, us-
ing SAM. We used this cluster as our unique test set. We
used our method to perform an exploratory comparison to
see if and how the signature of the genes related to L-Asp
might be related to the three subtypes of disease. Results
in Table 2(b) show that the signature related to TEL/AML1
chromosomal aberration is strongly related to the signature
for L-Asp sensitivity. This appears to be in accordance with
literature findings since TEL/AML1 mutation is known to
be associated with good prognosis and sensitivity to L-Asp
([15]). Moreover, the highly significant values of φ and pφ

suggest, at no extra experimental cost, a specific, signifi-
cant set of genes (the overlap between the signatures) on
which further study could be conducted to possibly under-
stand more about the molecular mechanisms underlying the
sensitivity to L-Asp and better prognosis. FIT has thus been
used to extract meaningful and better selected information
embedded in sets already annotated. Because of the large
amount of signatures available, such an approach can lead
to the discovery of new information based on data already
studied, accelerating the process of discovery of interest-
ing sets of genes to be investigated. This can shorten the
expensive and time consuming processes that allow the ex-
perimental identification of meaningful candidate genes.

6 Conclusions

Because of the high density of the data treated and pro-
duced, microarrays are a continuous source of new biolog-
ical information. A necessary resulting effect of this prop-
erty however, is the continuous challenge with respect to
the management, evaluation and interpretation of the large
scale data they produce. Here we show a new way of navi-
gating through the sea of complexity produced by microar-
ray experiments, devising a method to compare and contrast
gene sets, discovering or uncovering potentially hidden as-
sociations and mining new similarities at no new biological
experimental cost. Namely, we showed how it is possible to
deal with large populations of sets, confirm and enhance the
results of comparison between a benchmark and a newly
found population of gene sets. We were also able to ex-
tract a significant set of genes to obtain new insights for
the important functioning of L-Asp in the treatment of ALL
patients, hopefully shortening and easing the process of dis-
covery of meaningful candidate genes. Our approach also
addresses the issue of the set population comparison when
dealing with validation of new data mining algorithms. By
combining two measures for similarity, we obtain the global
score φ and pφ, able to give a statistical measure of the simi-
larity among sets. Obviously, more statistical tests could be
added to enhance the robustness of the final score, and dif-
ferent statistical approaches could be devised to describe in
as many ways as possible the similarity among sets. How-
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Figure 2. Figure 2(a) plots the distributions of
two biclusters (#79 and #60) from the Lym-
phoma data set. Both biclusters are enriched
for Germinal Center, however bicluster #60 is
more specific. Table 2(b) shows the scores
for comparison between signatures of 3 sub-
types of ALL due to chromosomal abnormal-
ities and the L-Asp cluster. The best fitting
is for the TEL/AML1 signature, consistently
with literature findings.

ever, this method provides interesting results, and can be
used for broad general purposes applications, as the input
required are very simple. In the complex landscape of the
deciphering of genes interactions, FIT can give a meaning-
ful contribution in allowing quantitative comparisons of en-
tire sets of populations for computational validation, and
biological insight.
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